
BIOINFORMATICS Vol. 18 no. 5 2002
Pages 689–696

Support vector machines with selective kernel
scaling for protein classification and
identification of key amino acid positions

Nela Zavaljevski 1, Fred J. Stevens 1 and Jaques Reifman 2,∗

1Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439, USA and
2US Army Medical Research and Materiel Command, 504 Scott Street, Fort Detrick,
MD 21702, USA

Received on May 25, 2001; revised on November 31, 2001; accepted on December 6, 2001

ABSTRACT
Motivation: Data that characterize primary and tertiary
structures of proteins are now accumulating at a rapid and
accelerating rate and require automated computational
tools to extract critical information relating amino acid
changes with the spectrum of functionally attributes
exhibited by a protein. We propose that immunoglobulin-
type beta-domains, which are found in approximate 400
functionally distinct forms in humans alone, provide the
immense genetic variation within limited conformational
changes that might facilitate the development of new
computational tools. As an initial step, we describe here
an approach based on Support Vector Machine (SVM)
technology to identify amino acid variations that contribute
to the functional attribute of pathological self-assembly
by some human antibody light chains produced during
plasma cell diseases.
Results: We demonstrate that SVMs with selective kernel
scaling are an effective tool in discriminating between be-
nign and pathologic human immunoglobulin light chains.
Initial results compare favorably against manual classifi-
cation performed by experts and indicate the capability
of SVMs to capture the underlying structure of the data.
The data set consists of 70 proteins of human antibody
κ1 light chains, each represented by aligned sequences of
120 amino acids. We perform feature selection based on
a first-order adaptive scaling algorithm, which confirms the
importance of changes in certain amino acid positions and
identifies other positions that are key in the characteriza-
tion of protein function.
Contact: nelaz@ra.anl.gov; fstevens@anl.gov;
jaques.reifman@amedd.army.mil

INTRODUCTION
Two recent publications (International Human Genome
Sequencing Consortium, 2001; Venter et al., 2001)
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documenting preliminary analysis of the human genome
represent nothing less than a revolution in biological
research, be it directed at fundamental issues, biomedical
study, or biotech applications. The genomes of several
hundred viruses, dozens of bacteria, and other organisms
have been completed and many more projects, both in
public and private venues, are aggressively underway.

Variations in DNA sequence and the predicted
amino acid sequence derived from it can be correlated
with discerned alterations in phenotype. However, an
understanding of the basis for an observed correlation
requires knowledge of the function or functions of the
encoded protein, and insight into how single amino
variations might directly or indirectly impair or enhance
the functional and biophysical attributes of the gene
product. This capability is dependent upon knowledge
of the spatial relationships among all of the amino acids
in the protein. This information requires knowledge of
the three-dimensional structures of the protein itself, or
a close structural homolog of the protein of interest. The
importance of structural information to fully realize the
implications and information content of the data generated
by genomic sequencing has prompted the multinational
initiation of structural genomics projects, which have
been described in many recent publications, including
Blundell and Mizuguchi (2000); Gershon (2000); Norvell
and Machalek (2000), and Terwilliger (2000), to cite but a
few. The goal of these projects is to complete the database
of possible protein structures at a vastly accelerated rate.

The concurrent explosions of sequence and structural
data have not been paralleled by an increase in the number
of workers to correlate the data and extract meaningful
new information and knowledge. This extraction process
is critical to the way by which sequence and structure
data contribute to both basic and applied research. Clearly,
as neither the human genome project nor the emerging
structural genomics program was possible without the
introduction of extensive automation of experimental
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methods, a similar challenge is presented by the need to
merge sequence, structure, and functional data to construct
an understanding of each protein system. Such capability
can be accomplished through bioinformatics tools that
relate extensive amino acid variation in a protein of known
structure to achieve automated prediction of a functional
attribute.

We recently completed an analysis of a database of
human antibody light chain sequences from patients with
plasma cell diseases and found that among the κ family
of light chains we were able to correlate amyloid-forming
capability with the presence of one or more of a limited
set of structural ‘risk factors’ (Stevens, 1999, 2000). No
such correlation has emerged among the λ family subset
of data. This family, in general, appears to be intrinsically
more amyloid-prone than the structurally homologous κ

family. We, therefore, hypothesized that less additional
destabilization through somatic mutation was required to
increase the amyloidopotency of λ light chains (Stevens,
1999, 2000). This premise implies that new bioinformatic
tools, such as might be found in approaches based on
Support Vector Machines (SVMs), are needed to extract
relevant information from the highly heterogeneous data.
The first step in development of these tools is presented in
this study, in which a simple SVM approach demonstrates
accuracy of classification of κ data comparable to that
previously achieved.

Support vector machines, a recently proposed
supervised machine learning technique (Vapnik, 1998;
Cristianini and Shawe-Taylor, 2000), have been shown to
be an effective bioinformatics tool in multiple areas of
biological analysis. For example, SVMs have been used
to functionally classify genes using knowledge-based
analysis of microarray gene expression data (Brown et al.,
2000) and to classify microarray data in combination with
gene selection (Furey et al., 2000; Mukherjee et al., 2000;
Guyon et al., 2001). They have been applied to infer gene
functional classification from heterogeneous data sets
consisting of DNA microarray expression measurements
and phylogenetic profiles from whole-genome sequence
comparisons (Pavlidis et al., 2001). In addition, specially
designed SVM kernels have also been used to recognize
translation initiation sites in DNA (Zien et al., 2000).

For protein analysis, SVMs have been less prevalent
(Jaakkola et al., 2000; Hua and Su, 2001; Ding and
Dubchak, 2001). Instead, most applications to date have
been based on Neural Network (NN) technology (Baldi
and Brunak, 1998). For instance, Qian and Sejnowski
(1988) and Holley and Karplus (1989) applied NNs
for classification of protein secondary structure while
Wu (1997) used them for prediction of protein tertiary
structure.

In this study, we propose to use SVMs with selective
kernel scaling for the classification of the κ family of

human antibody light chains into benign or pathogenic
categories and for the identification of markers, i.e. the
selection of features, in the sequence of amino acids
that are key discriminatory indicators. SVMs or other
machine-learning tools have not yet been investigated for
this problem. The selection of SVMs technology is driven
primarily by their unique ability to construct predictive
models with superior generalization power when the
dimensionality of the data is high, i.e. the number of
input features is large, and the number of observations
available for developing (i.e. training) the model is limited.
Their selection in this study is also attributed to their
property of being capable of adapting to the problem
at hand by including prior knowledge into the so-called
kernel (mapping) function. We make use of this property
to selectively scale the importance of amino acids in the
sequence based on position variability at the germline
level and position discriminatory power obtained through
post-processing. In this work, we employ a version of the
SVMlight code (Joachims, 1999) that we have modified
to include selective kernel scaling. The original code is
available at http://ais.gmd.de/∼thorsten/svm light.

SYSTEM AND METHODS
Data set
Historically, immunoglobulin light chains were one of the
major early subjects of protein sequence determination.
This occurrence was a consequence of at least two
considerations. One, because of the cancer, multiple
myeloma, large quantities of essentially pure, monoclonal
protein could be obtained from patients as Bence Jones
protein, so named for the physician who first described
the material some 150 years ago. Two, these proteins
provided the first glimpse of the structural origin of the
diversity of antigen recognition by the immune system by
demonstrating the diversity of the amino acid sequences
found in the light chains, as well as heavy chains, of
antibodies. At that time, it was not appreciated that
in many patients the protein was a potential cause of
death. To date, we have compiled a database of light-
chain sequences from approximately 400 patients with
plasma cell diseases. The data are essentially equally
divided between the κ and λ classes of light chain.
Because the earlier studies of Bence Jones proteins were
oriented toward immunochemical interests, clinical data
are available for only about half of the entries in the
database. For the purposes of the work described here, we
have limited our efforts to the same subset of data that
was available for the previous study in which we identified
four structural ‘risk factors’ that appear to reveal most
amyloidogenic κ1 light chains (Stevens, 1999, 2000).

The human light-chain database includes both κ and λ

gene families encoded on separate chromosomes incor-
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porating substantial amino acid variation. The κ family
is represented by four major subgroups, of which the κ1
subgroup is the most common. To further reduce inherited
variation, primary sequences restricted to κ1 light chains
were extracted from the complete database and used for
classification. Thus, our entire data set consists of 70 κ1
light-chain proteins. Of those, six proteins were known to
be benign, 33 were known to be pathogenic, i.e., from pa-
tients with amyloidosis, and 31 were of unknown pathol-
ogy. Further analysis of the 31 unclassified proteins, in-
cluding the use of the SVM classifier itself to identify
misclassified proteins, allowed us to categorize 28 pro-
teins into the benign class and the remaining three into
the pathogenic class. Therefore, the final data set is almost
equally divided (34/36) between the two classes, which
avoids the construction of a class-biased classifier.

The SVM classifier receives a sequence of amino acids
representing a protein as its input and predicts the class
of the protein as its output. Because SVMs, as well as
other machine-learning algorithms, use numerical values
as inputs, they require the definition of encoding schemes.
The encoding scheme for protein sequences can be rather
involved and can greatly impact the performance of the
classifier. One possibility is to encode each one of the
20 letters corresponding to the 20 amino acid types of
a protein into a numerical scheme. In this case, each
letter can be represented by a 20-dimensional binary
vector indicating the presence of a particular amino acid
or by a lower dimension vector based on the known
physicochemical properties of each amino acid type
(Baldi and Brunak, 1998). Here, we implement the latter
scheme where each amino acid is represented by a set of
seven physicochemical properties (Lohman et al., 1994),
hydrophobicity, hydrophilicity, polarity, volume, surface
area, bulkiness, and refractivity, scaled to the [−1, 1]
interval. The primary structure of the κ light chains is
aligned to 120 amino acid positions, which are, therefore,
represented by 840 (120 × 7) input features to the SVM.

Support vector machines
Support vector machines are universal approximators
that can be used to learn a variety of representations
from training samples, and as such, are applicable to
classification tasks and regression tasks (Vapnik, 1998).
Their unique ability to develop models with superior
generalization capabilities when the number of input
features is large compared to the number of training
samples is making this emerging technology the tool of
choice among the various supervised learning algorithms,
including NNs. Unlike NNs and other similar approaches
where the number of model parameters that require
estimation grow exponentially with the number of input
features, the dimension of the SVM optimization problem
is equal to the number of training samples. This unique

capability affords their use for protein classification where
the data sample is sparse and the dimension of the input
features is large. The use of NNs, if attempted for this class
of problems, would result in an overfitted model with very
poor generalization capability.

When used for classification, SVMs map the input space
into a higher-dimensional feature space that separates a
given set of binary-labeled training data with an optimal
hyperplane. The optimal hyperplane found by the SVM
learning algorithm is the one that maximizes the separat-
ing margin between the binary classes of the training data
and is defined by a relatively small number of MS vectors
in the input data set called support vectors. The motivation
for mapping the data into a high-dimensional feature space
is that linear decision boundaries constructed in the high-
dimensional feature space correspond to nonlinear deci-
sion boundaries in the input space.

Given a training set of M samples or input vectors
{x1, x2, . . . , xi , . . . , xM } with known class labels
{y1, y2, . . . , yi , . . . , yM }, yi ∈ {+1, −1}, a new data point
x is assigned a label by the SVM according to the decision
function

f (x) = sign

(
MS∑
i=1

yiαi k(xi , x) + b

)
(1)

where
k(xi , x) = 〈
(xi ), 
(x)〉 (2)

is the kernel function that defines the feature space, 
(x)

is a nonlinear mapping function from input space to
feature space, 〈·, ·〉 denotes an inner product, b is a bias
value, and αi are positive real numbers obtained by solving
a Quadratic Programming (QP) problem that yield the
maximal margin hyperplane (Vapnik, 1998).

A few important features of the algorithm should be
noted. First, the number of free parameters of the QP
problem is equal to the number of observations M in the
training data. Second, the parameter αi associated with
each training point xi expresses the strength with which
that point is embedded in the decision function. It turns
out, due to the nature of the QP problem, that only a
subset MS of the M points will be associated with non-
zero αi . These points are the support vectors, xi , i =
1, 2, . . . , MS , and are the points that lie closest to the
separating hyperplane. Finally, the mapping function 


need not be explicitly defined because the algorithm only
requires the evaluation of the inner product in (2).

One of the most common kernels is the polynomial
kernel

kP(xi , x j ) = (a + bxi · x j )
d (3)

where a, b, and d are real-valued constants. A special
case of this kernel is the linear kernel obtained when
a = 0 and b = d = 1. The kernel function, however,
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can be customized to the problem at hand (Zien et al.,
2000). This unique feature of SVMs gives us the ability
to implicitly incorporate prior knowledge, such as known
physicochemical protein properties, into the mapping
function by properly engineering the kernel function.

Selective kernel scaling
We customize the kernel function so that each component
or input feature variables � of the input vector i , x�

i ,
� = 1, 2, . . . , 840 and i = 1, 2, . . . , M = 70, could
have a different scaling factor related to its importance
to the classification problem. The modified kernel has the
following form:

ks(xi , x j ) = k(Sxi , Sx j ) (4)

where S is a diagonal matrix of scaling factors. Here, we
employ equal scaling for each group of seven properties
representing each amino acid type and position-dependent
scaling, based on the two schemes described below, to
each of the 120 positions in the amino acid sequence.

1. Germline scaling
The first selective kernel scaling, termed germline scaling,
is based on the assessment of the significance of the
variability at specific positions in the amino acid sequence.
All human κ light chains originate from a repertoire
of about 14 inherited or germline genes. When these
sequences are compared, 40 sites are invariant at the
genetic level implying that evolution has conserved these
positions for reasons that may include permissivity of fold,
maintenance of stability, or contributions to one or more
functional considerations. Other positions exhibit two or
more alternative amino acids. We assume that positions
that are conserved at the germline level would tend to
have a higher probability of significantly affecting protein
fold and/or stability, and therefore, lowered the weights
assigned to positions of amino acid that exhibit variability
at the germline level. Accordingly, the germline scaling
factor for position n, n = 1, 2, . . . , 120, is computed as
1/N (n), where N (n) is the number of different amino acid
types that appear at position n in the germline sequences.

2. Adaptive scaling
The second scheme, based on the post-processing of
the classification problem, is adaptive and provides the
means to iteratively modify the scaling factor of each
input feature variable based on its affect or sensitivity
on the classification. The Sensitivity Index (SI) of the
classification function to a change in component � of input
feature vector i is to the first order of approximation given
by (Evgeniou et al., 2000)

SI� ≈
Ms∑
i=1

∣∣∣∣ d f

dx�
i

∣∣∣∣ =
Ms∑
i=1

∣∣∣∣∣
Ms∑
j=1

α j y j
d(k(xi , x j ))

dx�
i

∣∣∣∣∣ . (5)

To compute the scaling factor of each group of seven
input feature variables representing each amino acid in the
sequence we add the SI in (5) over the seven properties,
normalize the cumulative SI to the [0, 1] interval and
take the square root. When germline scaling is used in
conjunction with adaptive scaling, the effective scaling
factor for position n is taken as the square root of
the product of 1/N (n) times the normalized cumulative
SI value. The scaling factor provides a measure of
the sensitivity of the classifier to perturbations of each
amino acid position, and therefore, it is used here as a
metric for feature selection—a needed capability in the
identification of salient markers in the sequence of amino
acids responsible for characterizing protein function.

Simulation results
Our method is tested in a number of simulation runs with
the SVMlight code (Joachims, 1999) modified to include
the scaling kernel schemes described above. The results
are compared against a manual, heuristically performed
classification approach (Stevens, 2000). Three measures
of accuracy, classification error (E), recall (R), and
precision (P), are used to assess the performance of the
SVM classifier for the testing data

E = FP + FN

TP + FP + TN + FN
× 100% (6)

R = TP

TP + FN
× 100% (7)

P = TP

TP + FP
× 100% (8)

where TP is the number of true positives, i.e., pathogenic
proteins, FP is the number of false positives, TN is
the number of true negatives and FN is the number of
false negatives. The classification error E provides an
overall error measure, recall R provides a measure of
the classification of the pathogenic proteins, and precision
P provides a measure of the classification of the benign
proteins.

The leave-one-out cross validation procedure is
employed to estimate the classification accuracy of
the 70-protein sequences. The leave-one-out procedure
consists of removing from the training data one sample,
constructing the decision rule on the basis of the
remaining training data and then testing on the removed
sample. In this fashion, one tests all M = 70 samples of
the training data using 70 different decision rules (models)
and computes the measures of accuracy in (6)–(8) based
on the aggregate results over the 70 models.

The classification results using a linear kernel function
with different position-dependent scaling schemes for the
input features representing the sequence of amino acids
are presented in Table 1. The entries without parenthesis
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indicate results obtained by encoding the amino acids
into the seven physicochemical properties discussed in
the Section System and methods while the entries
inside the parenthesis indicate results using six (polarity
excluded) physicochemical properties. We first discuss
the results obtained with the seven physicochemical
properties. The direct application of the SVM algorithm
with uniform scaling factors (i.e., all 840 (120 × 7) inputs
equally weighted) achieved 72% classification accuracy
(or alternatively, 28% classification error), 66% recall
accuracy, and 75% precision accuracy. Adaptive scaling,
in row two, employing the first-order SI in (5) improves
all three measures of performance between 4–14%.

Adaptive scaling within the context of the leave-one-out
cross validation procedure is performed as follows:

(1) Take 69 protein samples for training the SVM and
leave one sample out for testing.

(2) Initialize the scaling factors for the � inputs,
� = 1, 2, . . . , 840, based on uniform scaling or
based on the germline sequence scaling.

(3) Train the SVM.

(4) Using (5), recompute the scaling factor for each
of the � input features and then aggregate and
normalize the scaling factors for each group of seven
inputs representing each amino acid.

(5) Repeat steps 3 and 4 until the improvement in the
classification error for two consecutive iterations is
< ε (three to four iterations are usually sufficient).

(6) Test the remaining sample using the most recent
SVM scaling factors.

(7) Repeat steps 1–6 for all 70 samples.

The classification results obtained by scaling the
input features based on a priori knowledge about the
significance of each specific amino acid mutation derived
from conservation at the germline level is illustrated in
the third row of Table 1. These results show very slight
improvements over the uniform scaling case (row one).
This may be consistent with the finding that most of these
positions exhibit significant somatic variation and the
fact that the relevant functional attribute, pathological
aggregation, is generally a disease of advanced age and is
not counter selected by evolution. The combination of the
germline sequence scaling followed by adaptive scaling
(row four) yields more significant improvements in each
of the three measures of performance. The improvements
range from 7–22% over the germline sequence scaling
results presented in row three, confirming our hypothesis
that the use of adaptive scaling results in an improved
classifier with better generalization capabilities. In these
simulations, the number of support vectors MS for the

Table 1. Leave-one-out classification accuracy based on several scaling
schemes of the input features using seven and six (polarity excluded)
physicochemical properties

Classification Recall Precision
Scaling scheme error (E) (%) (R) (%) (P) (%)

Uniform sequence scaling 28 (22)a 66 (72) 75 (81)

Uniform sequence scaling 24 (22) 72 (69) 78 (83)
followed by adaptive scaling

Germline sequence scaling 27 (20) 72 (80) 74 (80)

Germline sequence scaling 21 (14) 77 (80) 80 (90)
followed by adaptive scaling

Randomly assigned classes 55 (52) 64 (58) 44 (46)
germline sequence scaling

Randomly assigned classes 54 (51) 35 (38) 42 (46)
germline sequence scaling
followed by adaptive scaling

Heuristic classification 15 94 79

aEntries in parenthesis indicate results obtained by encoding the amino
acids into six physicochemical properties, excluding polarity.

various models ranged from 42 to 50 out the 70 available
samples, indicating a substantial level of noise in the data.

To determine if the SVM was indeed learning the un-
derlying structure of the data we repeated the simulations
with randomly assigned labels for all 70 samples. The hy-
pothesis being that, if the classifier was indeed learning
the underlying structure of the data, as opposed to learning
the structure of random data, its accuracy with randomly
assigned labels should be about 50%. A large accuracy
would indicate that the SVM is learning to explain noise.
The results using germline sequence scaling are illustrated
in the fifth row of Table 1, which indicate an overall clas-
sification error of 55%, clearly showing that the SVM is
capable of capturing the underlying structure of the amino
acid sequences. Reflecting an increase in the level of noise
and a decrease in the information content of this data set,
the range of support vectors increased to 57–61.

These simulations also serve to verify that the proposed
adaptive scaling kernel algorithm does not result in an
overfitted model that improves the explanation of the
training data alone without improving the generalization
of the classification model. When adaptive scaling was
employed to the samples with randomly assigned labels
the classification error remained essentially unchanged
while recall and precision decreased, see row six in
Table 1. An increase in the classification accuracy would
have indicated that adaptive scaling is forcing the model
to learn the structure of random data.

We also investigate the sensitivity of the SVM classifier
to the removal of a few key amino acids and physico-
chemical properties used to encode the amino acids. We
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Fig. 1. Positional relevance of the amino acid sequence to
classification accuracy based on mutations at the germline level and
first-order SI.

removed each of the seven physicochemical properties,
hydrophobicity, hydrophilicity, polarity, volume, surface
area, bulkiness and refractivity, one at a time and repeated
the simulations. The removal of bulkiness or polarity
improved the classification results, indicating that these
properties add noise to the model without providing any
additional discriminatory information. The information
provided by bulkiness can be considered to be redundant
as both volume and surface area of the side chains
can provide, approximately, the same information. The
information provided by polarity, however, is generally
important because electrostatic interactions are a long-
range influence on both stability of the protein and its
capacity to interact with other molecules. The entries
inside the parenthesis in Table 1 illustrate the significant
improvements obtained when polarity is excluded. Eighty-
six percent classification accuracy is obtained when
germline sequence scaling is combined with adaptive
scaling (row four). This case is termed the ‘best model’
and is used as a base case in the comparisons below.

Figure 1 shows the normalized effective scaling factors
aggregated over the entire data set for the 120 amino
acid positions in the sequence. They can be employed as
metrics for feature selection as they provide a measure
of relevance of the contribution of each amino acid
position to the classification. Hence, amino acid positions
with large scaling factor values are key in discriminating
between benign and pathogenic proteins.

Each of the three amino acid positions with large
effective scaling factor values in Figure 1 has significant
structural significance. For instance, position 61 is
occupied by a highly conserved basic amino acid, Arg,

Table 2. Classification accuracy with key amino acids removed from the
sequence

Classification Recall Precision
Positions removed error (E) (%) (R) (%) (P) (%)

40 (Pro40) 17 83 83

61 (Arg61) 31 72 68

95 (Pro95) 27 75 72

40, 61 and 95
(Pro40 + Arg61 + Pro95) 37 63 63

None 14 80 90

which forms a partially buried salt-bridge with the equally
conserved acidic amino acid, Asp, located at position 82.
This interaction contributes significant free energy to
the stability of the protein. Any substitution of Arg61,
including the nominally conservative substitution by the
basic residue, Lys, is destabilizing and strongly associated
with amyloid formation (Stevens et al., 1995; Stevens,
2000). Pro95 is also highly conserved in human κ light
chains. Disregarding the appearance of Ser at position 95
(encoded by an allele of the variable domain gene of κ1a),
loss of Pro95 appears to be associated with light chain
pathogenesis (Stevens, unpublished results). Mutations of
position 40 were previously implicated (Stevens, 2000)
as a significant contributor to amyloidosis. In particular,
replacement of Pro with hydrophobic residues strongly
correlated with fibril formation (Stevens et al., 1995),
probably as a consequence of two factors. First, although
proline itself is significantly hydrophobic, replacement
with leucine or isoleucine may increase the content of
solvent accessible carbon. More importantly, however, is
likely to be the loss of the backbone rigidity of proline,
which when coupled with the glycine at position 41
provides the typical basis for tight beta-turn that occurs
between beta strands C and C′.

The capability of the scaling factors to perform feature
selection can be validated by retraining the SVM clas-
sifier with the three key amino acid positions removed.
Table 2 compares the classification results when each of
the three amino acid positions, Pro40, Arg61, and Pro95,
is removed both independently and together with the pre-
viously obtained result of the ‘best model,’ which is re-
peated in the last row. The classification accuracy deteri-
orates when each of the three positions is independently
removed, in particular, Pro95 and Arg61, and significantly
deteriorates when all three positions are removed. These
results clearly indicate that the scaling factors based on the
SI in (5) provide a good mechanism for feature selection.

In all simulations, the SVM classification models based
on a linear kernel were able to classify the 69 training data
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points with 100% accuracy. This indicates that the data
are linearly separable in the input space and the use of
nonlinear kernels is not necessary and should be avoided
to maintain model simplicity (Vapnik, 1998; Guyon et
al., 2001). Nevertheless, to investigate the stability of the
proposed selective kernel scaling algorithms with regards
to kernel forms we repeated the simulations using the
polynomial kernel in (3). Numerous simulations involving
various changes in the three parameters (a, b, and d) of
the polynomial kernel resulted in identical classification
accuracy as the ones obtained with the linear kernel in
the first four rows in Table 1. The number of support
vectors also remained almost unchanged ranging from 45
to 52 for the different models. Furthermore, comparisons
of the effective scaling factors indicate only minimal
variations around the distribution depicted in Figure 1. The
importance of the same three amino acid positions, Pro40,
Arg61, Pro95, was unmistakably distinguished in every
simulation, which serves to demonstrate that the adaptive
scaling algorithm is inherently stable, independent of
kernel form.

The last row in Table 1 shows the results of a heuristic
classification based on manual analysis of the data.
The previous analysis (Stevens, 2000) was reduced to
a subset of data to minimize confounding effects of
inherited variation that may influence the significance
of certain amino acid variations due to heterogenous
structural contexts. Because all 70 samples were used to
infer the heuristic classification rules, we cannot assess
the generalization ability of the approach and perform a
consistent comparison with the SVM results. Nonetheless,
the heuristic approach provides for a semi-quantitative
comparison, which indicates a favorable performance of
the SVM algorithm. It should be noted that unlike the
SVM algorithm, which is able to correctly separate the
training data with no misclassifications, the heuristic
approach misclassified 15% of the ‘training’ data.

CONCLUSIONS
Preliminary results demonstrate the ability of the SVM
algorithm with selective kernel scaling to discriminate
between benign and pathological immunoglobulins. The
accuracy of the algorithm evaluated using the leave-one-
out error estimate is promising and compares favorably
with the accuracy obtained through manual heuristic
classification performed by domain experts. Simulation
tests where the protein labels, benign and pathological,
are randomly assigned to the data are used to verify that
the modified SVM is capable of capturing the underlying
structure of the data. SVMs provide an effective inductive
tool for developing protein classification models where the
data is sparse and the dimensionality of the input features
is large.

The use of selective kernel scaling increased the classi-
fication accuracy by as much as 36% without negatively
impacting the generalization of the classification model. It
also underscores the importance of incorporating a priori
knowledge, such as the significance of conserved sites at
the germline level, to selectively modify the kernel mod-
eling function. Adaptive scaling based on first-order sen-
sitivity analysis is shown to be a particular important tool
for feature selection. It is able to confirm the importance
of certain amino acid positions in the light chain, such as
Arg61, and to identify new amino acid positions, such as
Pro40 and Pro95, which contribute significantly to deter-
mining protein stability, previously shown to be the princi-
pal determinant of the pathological attribute of light chain
pathology (Raffen et al., 1999). The approach is stable in
regards to kernel forms, providing the same performance
improvements independent of the type of kernel used.

Future research will concentrate on two key topics.
First, we will explore new algorithms for scaling the
input feature variables and performing feature selection.
Second, we will investigate ways in which the information
content of the three-dimensional protein structure can
be implicitly embedded in the scaling procedure. We
believe that it is imperative to combine protein primary
structure information with tertiary structure information
to characterize the protein functional behavior—a critical
feature ignored by simple analysis of strings of amino acid
labels.

This point is illustrated by the observation that the
inclusion of amino acid polarity had no significant effect
in this study. The SVM method did successfully identify
the importance of mutation Arg61 on protein pathology.
This residue, which participates in a highly conserved
ionic interaction with Asp82, has been observed
frequently in pathogenic light chains. However, mutations
that introduced the negatively charged Asp side chain at
position 31, also highly correlated with pathogenicity
(Stevens, 2000), did not contribute to the apparent
significance of polarity. Clearly, the global contribution
of many other changes in polar residues throughout the
molecule may mask the importance of polarity changes
at particular critical locations. This generalization should
also apply to any other physicochemical feature when
structural context is not incorporated.
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